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What are Graphs?

Definition (Graph)

A graph G is an ordered pair (V ,E ) where V is a set of vertices and E is
a collection of two-element subsets of V with repetition allowed.

Connected graph:
Unconnected graph:

Graph with loops:
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Motivation

1 To study geometric objects, useful to assign algebraic structures to
them

2 Eg. symmetry groups of shapes, groups on elliptic curves, etc.

3 Inspired by that, we do the same for graphs

4 The elements of these groups will be called divisors
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Divisors

Definition (Divisor)

A divisor D of a graph G is an assignment of integers D(vi ) to its vertices
vi .

Here are some examples:
D1(G ) = 3v0 + 0v1 + 5v2 + 4v3 + 2v4: D2(G ) = −3v0+0v1+5v2−5v3+1v4:

We can add the divisors as follows:
D1 + D2 = 0v0 + 0v1 + 10v2 − 1v3 + 3v4.
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Divisors

Theorem

The set of divisors of a graph G form an Abelian group Div(G ) under this
operation.

There is an identity, inverses exist, the operation is closed, associative, and
commutative.

Definition

The degree of a divisor D is the sum
∑

i D(vi ).

Theorem

The set of divisors with degree 0 form a subgroup Div0(G ) of Div(G ).

Sum of degree zero divisors must have degree zero. Inverses of degree zero
divisors must have degree zero.
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Chip Firing

Think of a divisor as assigning a number of “chips” to each node
When a node “fires,” it sends one chip along each edge
Note that this operation preserves the degree of the divisor

Example:

Definition (Firing Script)

A firing script σ is an integer vector σ ∈ Zn whose entries specify the
number of times each node of a divisor should be fired.
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Chip Firing as an Equivalence Relation

Definition

Let A and B be divisors on a graph G . Then A ∼ B if and only if there
exists a firing script σ that takes A to B.

1 For a graph G , the set Prin(G ) of all divisors equivalent to 0 is a
subgroup of Div(G ).

2 It follows that Prin(G ) is a subgroup of Div0(G ).

Definition (Jacobian Group)

Let G be a graph. The Jacobian group Jac(G) is defined as
Div0(G )/Prin(G).
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Examples of Jacobians

1 The linear graph Ln has a trivial
Jacobian.

2 The cyclic graph Cn has
Jac(Kn) = Zn

3 The complete graph Kn has
Jac(Kn) = Zn−2

n
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The Laplacian

Definition

Let G be a graph. Let ∆ be a diagonal matrix where ∆(i ,i) equals the
number of edges incident to vertex i . Let A be the adjacency matrix of G .
Then the Laplacian L := ∆− A.

1 Properties of the Jacobian can be derived from the Laplacian, and so
it is key to computation and proofs.

2 If we take the zero-divisor and fire the nodes by σ, the resulting
divisor is D = Lσ.

3 det(L) = | Jac(G )|.
4 The entries of the SNF of the Laplacian are the invariants of Jac(G).
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Previous Results

1 We want to relate properties of G to properties of Jac(G )

2 Lorenzini determined effect of adding or removing an edge of G on
the size of its minimal generating sets

Theorem (Lorenzini 1989)

Let G be a connected graph. Let G ′ be a connected graph formed by
removing an edge of G. Then the size of the minimal generating set of
Jac(G ′) differs from that of Jac(G ) by at most 1.
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Previous Results

1 Lorenzini does not provide a method for finding generators

2 Natural to start with simplest non-trivial divisors, δxy

Definition (δxy divisors)

The δxy divisor is D(vx) = 1, D(vy ) = −1, and D(vi ) = 0 for all i 6= 1,−1.

Theorem (Brandfonbrener et. al. 2017)

Let G be a graph and G1 be a connected graph formed by
adding/removing the edge between x and y. The divisor δxy is a generator
of Jac(G ) if and only if

gcd(| Jac(G )|, | Jac(G1)|) = 1.
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Previous Results

Theorem (Brandfonbrener et. al. 2017)

Let G be a graph and G1 be a connected graph formed by
adding/removing the edge between x and y. The divisor δxy is a generator
of Jac(G ) if and only if

gcd(| Jac(G )|, | Jac(G1)|) = 1.

G with | Jac(G )| = 40: G1 with | Jac(G1)| = 21:
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New Procedure

1 One ultimate goal is to produce minimal generating sets of divisors

2 Working with δ-divisors is a place to start

3 We developed a procedure which we conjecture produces a smallest
generating set consisting of only δ-divisors
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New Procedure

1 Choose a δx1y1 that generates a largest subgroup of Jac(G )

2 If x and y are connected, remove edge xy to form G1. Otherwise, add
edge xy

3 Choose a δx2y2 that generates a largest subgroup of Jac(G1)

4 If x and y are connected, remove edge xy to form G2. Otherwise, add
edge xy

5 Repeat until 〈δxnyn〉 = Jac(Gn−1)

Conjecture

If the above procedure terminates, then 〈δx1y1 , ..., δxnyn〉 = Jac(G ).
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New Procedure Example

Example

Computationally, we can check that
〈δ01, δ45〉 = Jac(G ).

1 | Jac(G )| = 9. The largest
subgroups generated by a δxy
have order 3. Set δxy1 equal to
one such divisor, for example
δ01.

2 G contains a 0− 1 edge, so
remove it to form G1.

3 | Jac(G1)| = 3. The largest
subgroups generated by a δxy
have order 3. Set δxy2 equal to
one such divisor, for example
δ45.

4 | Jac(G1)| = |〈δ45|〉, so the
process terminates.
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Computational Support

1 Wrote software to apply procedure to randomly generated graphs.

2 About 1000 across graphs of 4− 10 nodes.

3 In 99 percent of trials, the process terminated.

4 All terminated trials resulted in a generating set for the original graph.

Aurash Vatan () Generators of Jacobian Groups of Graphs



Future Research

1 Prove that when the procedure terminates, it produces a generating
set for the Jacobian of the original graph.

2 With what probability does the procedure terminate?

3 With what probability does it produce a generating set with minimal
order
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